Internet Connectivity Sharing in Multi-path Spontaneous Networks: Comparing and Integrating Network- and Application-Layer Approaches

Paolo Bellavista
Carlo Giannelli

DEIS, Università degli Studi di Bologna,
Viale Risorgimento, 2 - 40136 Bologna Italy
paolo.bellavista@unibo.it
Spontaneous networking
 - opportunities and technical challenges

Internet connectivity sharing
 - multi-hop, multi-path, heterogeneous, opportunistic
 - layer-3 vs. layer-7 approaches

RAMP middleware
 - layered architecture
 - primary middleware facilities for supporting and facilitating app development
 - preliminary experimental results
Spontaneous Networking (1)

- **Impromptu** interconnection of mobile and fixed nodes
 - *users willing to share* content and resources
- **Maximize resource/service utilization** by potentially interconnected nodes
 - *heterogeneous* wireless technologies
 - *both infrastructure and ad-hoc* connectivity
 - *multiple* connectivity opportunities
 - *sporadic/opportunistic* Internet connectivity
Node cooperation to
- provide single-hop connectivity
- manage multi-hop connectivity
- support peer-to-peer services

Peer-to-peer resource sharing
(Internet connectivity, file sharing, …)
- service advertising: NodeA provides lesson notes
- service discovery: NodeF looks for nodes that share files
- service invocation: NodeF browses and downloads notes stored on NodeA

NodeA and NodeF may reside in different layer-3 networks
- **Heterogeneous** nodes and connectivity
 - IEEE 802.11, Bluetooth, Ethernet
 - several operating systems
- **Decentralized and loosely-coupled** network management
 - localized provisioning of layer-2/3 connectivity
 - interconnection of heterogeneous layer-3 networks
- **Erratic and unpredictable behavior**
 - nodes abruptly create/destroy pieces of network
 - nodes dynamically join/move/leave

Scenario and management complexity makes hard the development of novel applications from scratch => *need for middleware solutions*
Easy-to-use middleware supporting spontaneous network management, transparent in relation to:
- operating systems
- wireless technologies
- layer-3 network configurations
- node mobility

Unicast and broadcast comm. support
- per-packet sendUnicast, sendBroadcast, receive

Peer-to-peer service provisioning and discovery
- per-service registerService, findService

RAMP Java prototype available on MS Windows XP/Vista/7, Linux, and Mac OS X
Service Layer
- high-level features for peer-to-peer service offering and discovery
- **Discovery**: mission-oriented TTL-bound broadcast
- **ServiceManager**: registration and advertising
- service invocation via Core Layer

Core Layer
- low-level primitives for end-to-end communication
- **E2EComm**: communication primitives for data en/decapsulation into RAMP packets
- **Heartbeater** for local IP addresses gathering and single-hop neighbors discovery
- **Dispatcher**: actual inter-node packet forwarding
- listener-based plug-in for run-time packet management
Border Nodes (BNs) with direct Internet connectivity share their access.

Layer-3 (L3) approach
- operating system default gateway to create multi-hop paths
- at most one path for each node

Layer-7 (L7) approach
- packets managed and dispatched by RAMP
- simultaneous exploitation of different paths and different access
L3 and L7 approaches together
- L3: minimum routing and communication overhead, but local decisions may affect remote nodes
- L7: multi-path enabling and operating system transparent, but increased communication overhead
- multiple modes of combining L3 and L7 approaches

Context-aware path selection (see also MMHC)
- quantitative metric for dynamic path evaluation
- limited information dissemination to minimize overhead

Differentiated metrics at service initialization and provisioning time
- first, coarse-grained evaluation based on rather static context information
- then, finer-grained dynamic re-evaluation based on context related to actual run-time performance
InternetService

- BNs *directly connected to the Internet*
- `registerService` to advertise Internet connectivity provisioning

InternetClient

- RAMP node requiring Internet connectivity
- `findService` to discover BNs providing connectivity

Layer3Manager

- *layer-3 gateway modification*
- Dispatcher listener monitoring traversing packets on intermediary nodes
Collaboration of intermediary nodes
- request forwarding from client to BN
- *dynamic modification of local default gateway*

Layer3Manager
- monitor traversing packets and recognize modification requests
 - e.g., in Linux `route` and `iptables` commands
Data to/from the Internet *encapsulated into RAMP packets at app layer* and forwarded via Dispatcher

Double proxy architecture
- InternetClient/Service act as *proxies*
- e.g., HTTP proxy server on clients and BNs, en/decapsulating HTTP requests and responses

Multi-path connectivity
- *increased overall bandwidth*
- *greater reliability*
Both L3 and L7 approaches

InternetClient selects the most proper mode at runtime

- one L3 path + multiple L7 paths
- double-proxy in case of L7 approach
- single-proxy in case of L3 approach (no InternetService)
n L3SP mode
 - provides direct access to the Internet with **no additional overhead**
 - but *path modification requests may affect other nodes*

n L7MP mode
 - *no need of path pre-configuration*
 - but *double-proxy en/decapsulation overhead* (only HTTP at the moment)

n L3L7CMP mode
 - suitable for dynamic environments (as L7MP)
 - reduced overhead (in case of single-proxy)
Context-aware performance monitoring/evaluation and selection of available paths
- dynamic weight-based exploitation of every BN
- static and dynamic metrics

PathLength
- static comparison of path length

\[w_i = \frac{1 - (\text{path}_i \text{Length} / \text{averageLength} / \# \text{paths})}{\# \text{paths} - 1} \]

PathThroughput
- lightweight throughput monitoring
\[\frac{\text{requestPayload} + \text{responsePayload}}{\text{elapsedTime}} \]
- dynamic weight reconfiguration

\[w_i = \frac{\text{path}_i \text{Throughput}}{\text{averageThroughput} / \# \text{paths}} \]
Google maps browsing: HTTP intensive communication
- very frequent interactions with limited payload size

Bandwidth limitation towards BNs
- periodic weights re-evaluation accordingly to really achieved throughput
- bandwidth allocation swap after 105s

![Diagram showing bandwidth limitations and throughput for BN1 and BN2](image)
Same bandwidth allocation, **both L3 and L7 approaches simultaneously**

- L3 path towards BN₁, L7 path towards BN₂
- Throughputs are similar, **L3 path slightly better**
- **L7 path weight** tend to be slightly lower

Approach swap after 125s

- Weights change accordingly after few iterations
RAMP supports *multi-hop service-oriented* communication in *heterogeneous spontaneous networks*
- easy-to-use API for service development by non-expert programmers

Internet-connectivity sharing as possible central application
- *layer-3 and layer-7 approaches simultaneously*
- multi-path for greater quality and reliability
- proper path *dynamic evaluation and selection*

Ongoing work
- live multimedia stream *via DVB-T re-casting*
- porting to additional *mobile platforms*, e.g., Google Android and iPhoneOS
Thanks for your attention 😊
Questions time…

Prototype code and implementation insights

- http://lia.deis.unibo.it/research/RAMP/
- http://lia.deis.unibo.it/Staff/PaoloBellavista/
MANET

- **homogeneous** wireless technology
- usually targeted to a **specific application** with given constrains (e.g., energy, throughput...)
- **many** nodes with high **mobility** degree

Spontaneous networking

- very **heterogeneous** node capabilities
- **general-purpose** environment
- medium node mobility